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ABSTRACT: This study aimed to develop an 

artificial neural network classifier to discriminate 

between infected and healthy leaves with fusarium 

wilt, at an early stage of infection, using leaf 

reflectance data. Five spectral bands have been 

proposed, which were used as the neural network 

input variables and selected those that best 

discriminated fusarium wilt. Six vegetation indexes 

from hyperspectral and multispectral data were 

tested as vectors of characteristics of the neural 

network. Three cultivars of common bean and three 

levels of severity were used. The electromagnetic 

spectrum was divided into five spectral bands. In 

each band was made a principal component analysis 

and with the first principal component were 

generated the scores of each spectral band, which 

were used as input variables for the neural network. 

The vegetation indices used were NDVI, DVI, 

GNDVI, MCARI, RDVI and TCARI. The most 

efficient classifier used the DVI index obtained from 

multispectral data, as input variable and with two 

hidden layers. The result indicated that the use of 

hyperspectral data did not result in any significant 

improvement in classification, compared with the 

multispectral data. The classifier did not detect 

fusarium wilt prematurely. The classifier was 

efficient in discriminating infected and healthy 

leaves after the first symptoms become visible. The 

classifier got Kappa coefficient of 0.2105 in the 

classification a day after the appearance of the first 

symptoms characteristic of the disease. 

KEYWORDS:Principal components, discriminate, 

selection, variables, root. 

 

I. INTRODUCTION 
Common bean (Phaseolus vulgaris L.) is 

attacked by several diseases, including fusarium 

yellowing or wilt, caused by the fungus Fusarium 

oxysporum f. sp. Phaseoli, and which occurs 

practically throughout Brazil. 

Fusarium wilt is a root disease (root rot) 

and among its main effects include reduced stand 

and plant vigor. Productivity losses can reach up to 

80% (PEREIRA et al., 2011), increasing their 

incidence in areas where cultivation is intense 

(TOLEDO-SOUZA et al., 2009). Crop monitoring 

becomes crucial to prevent the disease from 

spreading throughout the plantation. 

Remote sensing techniques can be used to 

monitor changes in the spectral responses of 

vegetation, identifying stresses in crops. In this way, 

it becomes an important tool for estimating plant 

biophysical parameters. Several studies have shown 

the use of leaf reflectance in the Visible (400 - 700 

nm) and Near Infrared (700 - 1,000 nm) spectral 

region to detect changes in plant vigor with 

emphasis on fungal diseases (MAHLEIN et al., 

2010; RUMPF et al., 2010). 

The interaction of the pathogen with the 

plant can cause changes in the pigments, water 

content and functionality of plant tissues. These 

factors cause changes in the spectral characteristics 

of plants (MAHLEIN et al., 2012). 

Vegetation indices (IV) are used to 

estimate vegetation parameters. IVs are algebraic 

operations between reflectance values involving two 

or more spectral bands. Its objective is to extract and 

expand information about vegetation. Rumpf et al. 

(2010) used eight IVs to assist in the early detection 

of three fungal diseases in sugar beet plants. Yao et 

al. (2012) used IVs to determine early stress in 

soybean plants caused by the use of glyphosate. 

The use of hyperspectral data involves a 

large number of variables and one of the problems 

related to the high dimensionality of the data is the 
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imposition of requirements on the sample size 

(number of observations). Among the existing 

alternatives to reduce the dimensionality of data, 

principal components analysis (PCA) is one of the 

most popular. 

This work aimed to: (1) select the VIs, 

from simulated hyperspectral and multispectral data, 

most representative of the total variance of the data, 

which will be used as input variables of the 

classifier; (2) to develop and compare classifiers by 

artificial neural networks to discriminate leaves 

infected with fusarium wilt at three levels of 

severity. 

 

II. MATERIAL AND METHODS. 
The experiments were carried out in a 

greenhouse, with a controlled environment, located 

on the premises of the Empresa de Pesquisa 

Agropecuária de Minas Gerais – EPAMIG, 

Regional Unit Epamig Zona da Mata (UREZM) and 

on the premises of the Federal University of Viçosa 

(UFV), in the city of from Viçosa, Minas Gerais. 

To collect the spectral responses of bean 

leaves, experiments were carried out using three 

bean cultivars representing three groups: carioca 

(cv. Rudá), preto (cv. Supremo) and red (cv. 

Vermelhinho), given the economic importance of 

each group and the susceptibility to fusarium wilt. 

In each pot, two plants of the same bean cultivar 

were grown in 0.415 L of substrate (Tropstrato 

HT©, Vida Verde, Mogi Mirim, SP, Brazil). 

An experiment was carried out for each 

bean cultivar. The experimental design used was 

completely randomized (DIC), with four treatments 

(control and three levels of pathogen concentrations: 

1.0 x 10
4
 (low level), 1.0 x 10

5
 (medium level) and 

1.0 x 10
6
 (high level) conidia/mL), with six 

repetitions: each repetition being a pot containing 

two bean plants inoculated with a level of pathogen 

concentration. The arrangement of the vases on the 

bench was made by drawing lots. The experiment 

was repeated twice. 

 

Inoculation With Fusariumoxysporum F. Sp. 

Phaseolli 

In a greenhouse, 30 seeds of each bean 

cultivar were sown in polystyrene trays (68 x 35 cm) 

with 128 cells. Four days after planting most of the 

seeds germinated. Six days after planting, the bean 

plants were transplanted into plastic pots. 

For inoculation with F. oxysporum f. sp. 

phaseoli, the plants were removed from the 

styrofoam trays, and the roots washed with running 

water according to the methodology presented by 

Dongo and Müller (1969). 

After washing the roots of the plants, a third of the 

length of the roots was cut with the aid of scissors, 

then they were immersed in a suspension at a 

concentration of 1x10
4
 (low level) conidia/mL 

(macro and microconidia) for 5 min. This procedure 

was repeated at concentrations of 1x10
5
 (medium 

level) and 1x10
6
 (high level) conidia/mL, to study 

the three levels of infection severity of the plants. 

Then the plants were transplanted into pots 

containing 2.5 L of substrate and taken to the 

greenhouse. 

Plant evaluation was performed daily after 

inoculation, based on the scale described by Pastor-

Corrales and Abawi (1987), in which: 1: no foliar or 

vascular symptoms; 3: 1 to 10% symptomatic 

leaves, mild plant wilting and vascular discoloration 

of the hypocotyl; 5: 11 to 25% symptomatic leaves, 

moderate plant wilting, extensive vascular 

discoloration up to the first node; 7: 26 to 50% 

symptomatic leaves, severe plant wilting and 

vascular discoloration throughout the stem and 

petiole and 9: dead plant. 

 

Measurement Of Spectral Responses Of Bean 

Leaves 

In each pot, four fully developed leaves 

were chosen for the spectral reflectance 

measurements that were made daily after 

inoculation, at the same time of day, between 10:00 

and 14:00 hours. 

During the two experiments, for the three 

severity levels, 4,874 reflectance measurements 

were performed, 1,106 of which were in healthy 

plants and 3,768 in infected plants. 

Leaf spectral reflectance was measured 

with an ASD FieldSpec Pro FR spectroradiometer 

(Analytic Spectral Devices, Boulder, USA), with a 

plant probe for leaf contact measurements. This 

probe has an integrated 100 W halogen lamp, which 

was turned on 90 minutes before each data 

collection to stabilize it. The spectroradiometer has 

a spectral range between 350-1,100 nm and the 

useful reading range was between 400 and 900 nm, 

ruling out noisy spectral data at the extremes. The 

calibration of the spectroradiometer using the blank 

reference, with a Spectralon plate (Labsphere, North 

Sutton, USA), was performed at the beginning of 

each data collection and then at regular intervals of 

15 minutes. The measurement time of each reading 

was adjusted to 544 ms, and each reflectance 

collection, in each leaf, was the average of 10 

readings performed by the spectroradiometer. 

With the original reflectance data from the leaves, 

Hotelling's T
2
 average test was performed in order 

to verify if the separation between the classes of 

interest was significant, at a 1% significance level. 
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CLASSIFIER DEVELOPMENT 

The original data contained 751 variables 

(751 wavelengths) and 4,874 repetitions, the number 

of variables being high in relation to the number of 

repetitions, which must be at least 20 repetitions per 

variable measured (HAIR et al., 2010; SIDDIQUI, 

2013). 

To reduce the number of variables, the 

originaldataset was divided into five spectral bands, 

according to the spectral bands of the RapidEye 

system satellites. 

 

Spectral bands Wavelength range (nm) Number of variables 

Blue 440 – 510 70 

Green 520 – 590 70 

Red 630 – 685 55 

RedEdge 690 – 730 40 

Near infrared 760 – 850 90 

 

The division of each sample into these 

five spectral bands was also due to the direct 

relationship that each spectral band has with 

constituent parts of the bean leaves. In the visible 

spectrum (380 to 760 nm), the change in the 

spectral response of the leaf is due to the variation 

in the content of organelles, such as carotenoids 

and chlorophyll. In the near infrared (760 – 1200 

nm), variations in spectral responses are due to 

variations in the physical structure of the sheet 

(BAURIEGEL et al., 2011). 

An ACP was applied in each spectral band 

to reduce the number of variables, considering the 

correlation between the variables in each band. In 

this work, the first principal component (CP1) of 

each spectral band explained more than 88% of the 

variance of the original data, and with this CP1, the 

scores were calculated for each sample of the 

dataset of each band. These score values were the 

characteristics used as ANN input vectors. Before 

performing the principal component analysis, all 

data were centered on the mean. Thus, each 

variable has a mean of zero, that is, the coordinates 

are moved to the center of the data, allowing 

differences in the relative intensities of the 

variables to be easier to perceive (SOUZA and 

POPPI, 2012). 

 

VEGETATION INDICES 

Six vegetation indices common to 

hyperspectral and multispectral spectrometry were 

calculated: Normalized Difference Vegetation 

Index – NDVI (Rouse et al., 1974); Green 

Normalized Difference Vegetation Index – GNDVI 

(Yang et al., 2007); Difference Vegetation Index – 

DVI (Tucker, 1979); Modified Chlorophyll 

Absorption Reflectance Index – MCARI (Daughtry 

et al., 2000); Transformed Chlorophyll Absorption 

Reflectance Index – TCARI (Haboudane et al., 

2002); Relative Difference Vegetation Index – 

RDVI (Roujean and Breon, 1995). 

The blue (B), green (G), red (R), red-edge 

(RE) and near-infrared (NIR) spectral bands of 

multispectral data were simulated by averaging the 

reflectance readings in the RapidEye system 

satellite bands. 

 

Training And Architecture Of Artificial Neural 

Networks 

In this work, Multi-Layer Perceptron 

artificial neural networks (ANN) were trained to 

classify bean leaves using reflectance data. The 

ANN was trained using the ANN toolkit of the 

Matlab computer program (MathWorks, Natick, 

USA). 

Different neural network architectures 

were tested. The five proposed spectral bands were 

tested, individually and in combination, as feature 

vectors used as input to the ANN. The six 

hyperspectral and multispectral IVs used in this 

work were also tested, individually and in 

combination, as input variables of the classifier. 

ANNs with architectures were developed 

using two intermediate layers with different 

numbers of neurons (n1 and n2) and two neurons in 

the output layer (two classes: healthy and infected). 

The numbers of neurons tested, both in the first and 

second intermediate layers, were: 2, 4, 6, 8 and 10. 

Thus, 25 ANNs were trained for each set of input 

variables, with different neurons in the intermediate 

layers. 

The dataset had 4,874 samples, of which 

2,924 were used for training, 975 for validation and 

975 for testing. All datasets were chosen so that 

reflectance measurements of healthy and infected 

leaves would be present. The “early stop” method, 

described by Haykin (2000), was used to stop ANN 

training. This method uses the validation set to stop 
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updating the ANN free parameters during training 

and thus avoid overfitting the data. During training, 

the mean square error (MSE) is calculated with the 

training vectors and with the validation vectors. 

Training stops when the validation NDE starts to 

increase (HAYKIN, 2000). The number of 

iterations used to confirm the trend of increasing 

NDE is dependent on the problem (PRECHELT, 

1998), and ten iterations were used in the present 

work. 

 

Indexes Hyperspectral Multispectral 

NDVI (R800 – R670) / (R800 + R670) NIR – R / NIR + R 

DVI R800 – R680 NIR – R 

GNDVI  (R800 – R550) / (R800 + R550) IR – G / IR + G 

MCARI  [(R700 – R670) – 0,2.(R700 – R550)].R700 / R670 [(RE - R) – 0,2*(RE - G)]*RE/R 

RDVI  NDVI. DVI  NDVI. DVI 
TCARI 3.[(R700 – R670) – 0,2.(R700 – R550)].R700 /R670 3*[(RE - R) – 0,2*(RE - G)*(RE/R)] 

 

CLASSIFIER EVALUATION 

The classification of the classifier was 

made from the test sample. From this test set it was 

possible to build the classification confusion matrix 

(CONGALTON, 1991; SOUSA et al., 2010). 

Knowing that, using the Matlab ANN 

toolkit (MathWorks, Natick, USA), at the 

beginning of the training some ANN parameters 

are randomly generated and that these values can 

influence the final result of the training, each 

architecture was trained ten times. Among these ten 

trained ANNs, the one with the highest Kappa 

index with the test sample was chosen. 

At the end of the training process, for each 

combination of neurons in the two intermediate 

layers, the test sample was used to generate the 

confusion matrix. From the confusion matrix, the 

Kappa index was calculated. It was considered as 

the best architecture of the ANN the one that 

presented the highest value of Kappa index. 

To assess the difference between two 

Kappa indices, the Z test was used, according to 

Congalton and Green (1998), with a significance 

level of 5%. 

 

EARLY DETECTION OF FUSARIUM 

For the detection of fusarium, before its 

first symptoms became visible, the RNA that 

presented, statistically, the highest Kappa index 

was used. 

A dataset was used with 14 samples of 

healthy plants, 24 samples of infected plants for 

each level of infestation, totaling 38 samples, for 

each level of disease severity. Daily, this dataset 

was separated for the early detection of the disease. 

The samples from this dataset were not part of the 

ANN training, validation or testing set. 

 

 

III. RESULTS AND DISCUSSION 
DISEASE DEVELOPMENT 

The bean plants not inoculated with the 

pathogen, which served as a control for the 

experiment, remained healthy throughout the data 

collection period. 

The inoculated plants remained without 

showing any symptoms of fusarium wilt during the 

latency period of the disease. After the latency 

period the typical symptoms of the disease 

appeared. for cv. Rudá the first symptoms appeared 

on the eleventh day after inoculation of the 

pathogens (DAI); for cv. Red, the first symptoms 

appeared on the twelfth DAI and for cv. Supreme 

the first symptoms appeared in the fourth DAI. 

The most visible symptoms of fusarium 

wilt were observed in the aerial part of the plant, 

where few leaves withered, yellowed and fell from 

the base of the plant. The most noticeable symptom 

was the irregular development of infected plants, 

which were smaller than the control plants. 

For cultivars Rudá and Vermelhinhothe 

most expressive symptom was observed in the 

growth of infected plants. Infected plants had their 

growth impaired by the infestation of pathogens. 

These plants were smaller in size than the control 

plants. This fact is related to the colonization of 

plant roots by the pathogen. The infection, caused 

by pathogens in the sap-conducting vessels, impairs 

the transport of nutrients and water to other parts of 

the plant, hindering its development. 
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  DAI 

Cultivar Levels 1 2 3 4 5 6 7 8 9 10 11 

Rudá 

Low 1 1 1 1 1 1 1 1 1 1 1 

Medium 1 1 1 1 1 1 1 1 1 1 1 

High 1 1 1 1 1 1 1 1 1 1 1,1 

             

  DAI 

Cultivar Levels 12 13 14 15 16 17 18 19 20 21  

Rudá 

Low 1 1,1 1,2 1,4 2,0 2,1 2,2 2,6 2,7 3,1  

Medium 1,1 1,1 1,2 1,6 2,2 2,4 2,7 3,2 3,5 3,7  

High 1,2 1,2 1,6 1,9 2,7 3,1 3,3 3,6 3,9 4,1  

 

  DAI 

Cultivar Levels 1 2 3 4 5 6 7 8 9 10 11 

Vermelhinho 

Low 1 1 1 1 1 1 1 1 1 1 1 

Medium 1 1 1 1 1 1 1 1 1 1 1 

High 1 1 1 1 1 1 1 1 1 1 1 

             

  DAI 

Cultivar Levels 12 13 14 15 16 17 18 19 20 21  

Vermelhinho 

Low 1 1 1,1 1,2 1,3 1,9 2,0 2,6 2,7 3,1  

Medium 1 1,1 1,4 1,8 1,9 2,3 2,6 3,2 3,5 4,1  

High 1,1 1,4 1,7 1,9 2,2 2,8 3,1 3,7 4,2 4,8  

 

The cv. Supremo presented the most 

aggressive symptoms of the disease for the high 

level of severity. The first characteristic symptoms 

appeared in the fourth DAI and in the ninth DAI 

the plants were completely dead. Symptoms were 

primarily expressed in reduced plant growth, 

chlorosis and leaf drop, wilting and plant death. 

For low and medium levels of severity, for 

cv. Supreme, the symptoms observed were little 

loss of turgidity and reduction in plant growth. 

 

  DAI 

Cultivar Levels 1 2 3 4 5 6 7 8 9 10 11 

Supremo 

Low 1 1 1 1 1 1 1,1 1,6 2,1 2,8 2,9 

Medium 1 1 1 1 1 1 1,2 1,6 2,4 3,0 3,1 

High 1 1 1 1,2 1,6 4,3 7,1 8,4 - - - 

             

  DAI 

Cultivar Levels 12 13 14 15 16 17 18 19 20 21  

Supremo 

Low 3,2 3,3 3,7 4,0 4,2 4,9 5,2 5,5 5,8 6,2  

Medium 3,4 3,9 4,2 4,4 5,1 5,7 5,9 6,2 6,4 6,6  

High - - - - - - - - - -  

 

The Fc values, calculated for Hotelling's 

T
2
 test of the vectors of mean reflectances of the 

classes of healthy leaves and infected leaves are 

shown below. The difference between the two 

classes was significant at the 5% probability level 

for the three disease severity levels. Therefore, the 

development of a classifier to discriminate between 

the two classes may be feasible. 
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Levels Valuesof Fc 

Low 9,53* 

Medium 11,28* 

Highe 8,57* 

* = significant at the 5% probability level by Hotelling's T
2
 test. 

 

ANALYSIS BY PRINCIPAL COMPONENTS 

Reducing the dimensionality of the data is 

a crucial point when working with large volumes of 

data, the use of ACP allows retaining much of the 

variance of large volumes of data in other variables 

called principal components, which is expected to 

be in a very large number. smaller than the original 

variables. Nest, it is shown how much each CP1, 

from each band, retained the total variance of the 

data. 

 

 Blue band Green band Red band 
RedEdge 

band 

Infrared 

band 

CP1 94,59 99,24 96,47 91,35 99,72 

 

For each spectral band, the CP1 retained at 

least 91.35% of the total variance of the data, 

therefore, the CP1 of each band was used to 

generate the values of the scores used as the ANN 

input vector, without significant loss of 

information. 

 

In this way, there was a reduction from 

751 original variables to five new independent 

variables, retaining more than 91% of the total 

variance of the original data. Combinations of these 

new variables were used as input vectors for the 

artificial neural network. 

 

Classifier By Artificial Neural Networks 

The classifiers, which used the scores 

generated by the CP1 of the five spectral bands 

proposed in this work as vectors of characteristics, 

had Kappa coefficients statistically equal to zero. 

All classifiers performed equal to a random 

classification. Spectral band scores alone or in 

combination did not discriminate healthy plants 

from plants inoculated with fusarium wilt 

pathogens. 

As for the classifiers that used IVs as the 

input variable, those that presented the best results 

in the discrimination of diseased and healthy leaves 

used the DVI as a vector of characteristics. The 

column with the Zc values (calculated Z) are 

greater than the tabulated Z value (1.96), indicating 

that the classification of both ANNs is significantly 

better than a random classification. 

 

Data n1 n2 Kappa coefficient Variance Zc 

Hyperspectral 2 2 0,2912 0,0081 3,24* 

Multispectral 2 2 0,2475 0,0092 2,58* 

 

There was no significant difference 

between the values of the Kappa coefficients for 

the ANN using the DVI obtained from 

hyperspectral and multispectral data. 

The classifiers that used NDVI, GNDVI, 

MCARI, TCARI and RDVI, alone or a 

combination of them, as input variable, had Kappa 

coefficients statistically equal to zero. These 

classifiers performed equal to a random 

classification. 

It was possible to verify that the use of 

hyperspectral data did not imply a significant 

improvement in the classification when compared 

with multispectral data. 

The DVI was more sensitive, as an input 

variable, in the discrimination of diseased and 

healthy leaves. This can be justified by the fact that 

the DVI obtained from multispectral data is the 

difference between the IR and Red bands. The 

colonization of common bean roots by pathogens 

directly affects the transport of nutrients and water 

to the photosynthetic organelles located in the 

leaves, causing a change in the spectral response of 

the same. The Red band is part of the visible 

spectrum, being sensitive to variations in the 

content of organelles such as chloroplasts, which 

were harmed by the decrease in the rate of nutrients 

reaching the leaves. The IR band is sensitive to 

variations in the physical structure of the plant, 

such as water content. This content was also 

impaired by the colonization of pathogens in the 

conducting vessels of the bean roots and stem. 

However, it is worth mentioning that the 

object of study of the classification was a root 
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disease that interfered little in the aerial part of the 

plant, causing small variations in the spectral 

responses of the leaves. 

The class that presented the most 

confusion was healthy leaves, where 40.74% of the 

leaves that should be classified for this class were 

classified as infected. This confusion can be 

attributed to the fact that the pathogen had little 

effect on the bean leaves, which remained healthy 

throughout the data collection period. 

The greatest influence of the pathogen 

infection was on the size of the plants. Due to the 

infection of the pathogen in the nutrient transport 

system, the infected plants were shorter than the 

control plants. Indicating greater influence of 

fusarium wilt on the physical structure of the plant, 

which was not detected in the foliar measurements. 

Perhaps a measurement of the spectral response of 

the canopy would show greater variation as a 

function of the disease. 

 

Classes Infested leaves Healthy leaves Overall accuracy 

Infected leaves 170 33 
67,08% 

Healthy leaves 74 48 

Producer accuracy 69,67% 59,26%  

Kappa coefficient 0,2475  

 

EARLY DETECTION OF FUSARIUM WILT 

The best classifiers, for each bean cultivar, presented significant Kappa coefficient values, showing that they 

were better than a random classification are shown below. 

 

Cultivar n1 n2 Kappa coefficient Variance Zc 

Rudá 10 4 0,2912 0,0081 3,24* 

Vermelhinho 8 8 0,2401 0,0075 2,77* 

Supremo 2 2 0,2475 0,0092 2,58* 

 

The best results obtained by the classifier 

in the detection of fusarium wilt were for cv. 

Supreme, for the medium level of severity. 

The classifier was unable to discriminate 

fusarium wilt early. Only on the eighth DAI, one 

day after the first characteristic symptoms became 

visible, did the ANN score better than chance, with 

a Kappa coefficient equal to 0.2105. 

The best results in the classification 

occurred in the fifteenth DAI, with a Kappa of 

0.4932. 

There was an increase in the value of the Kappa 

coefficient with the passing of the days after the 

inoculation of the pathogens. Indicating that there 

was variation in the spectral response of infected 

leaves when compared with the responses of 

healthy leaves. However, this variation was not 

enough to obtain results similar to the 

discrimination of foliar diseases as obtained by 

Rumpf et al. (2010), Bauriegel et al. (2011) and 

Mahlein et al. (2012). 

 

 DAI 

Classes 1 2 3 4 5 6 7 8 9 10 11 

Infected 33,33 37,50 33,33 41,67 41,67 45,83 54,17 58,33 62,50 83,33 79,17 

Healthy 42,86 50,00 57,14 50,00 57,14 42,86 42,86 64,29 69,23 64,29 50,00 

Overall 

accuracy 
36,84 42,11 42,11 44,74 47,37 44,74 50,00 60,53 65,79 76,32 68,42 

Kappa 

coefficient 
-21,28 -11,17 -14,70 -7,55 -1,06 -10,53 -2,85 21,05 31,58 48,34 30,06 

            

 DAI 

Classes 12 13 14 15 16 17 18 19 20 21  

Infected 72,00 65,22 69,57 73,91 60,87 65,22 63,64 77,27 68,18 59,09  

Healthy 53,85 61,54 69,23 76,92 69,23 69,23 61,54 53,85 61,54 78,57  

Overall 

accuracy 
65,79 63,89 71,05 75,68 64,71 66,67 61,76 69,70 64,71 65,65  
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Kappa 

coefficient 
27,57 25,28 40,46 49,32 30,61 32,97 20,79 31,82 25,55 35,29  

 

From the first to the seventh DAI, the 

Kappa coefficient values indicated a worse 

classification than a random classification. This 

may be related to the fact that the pathogen 

penetrates the plant through the root. As the 

pathogen infected the young plant, the only 

symptom detected was a reduction in its 

development. Little loss of turgor was detected 

during the experiment. 

Based on the results obtained in this work, 

it was possible to verify the possibility of 

discrimination between leaves infected with 

fusarium wilt pathogens and healthy leaves, after 

the first symptoms became visible. 

For the early stages of the disease, RNA 

was not efficient in the classification. Compared 

with results obtained by other studies (RUMPF et 

al., 2010; BAURIEGEL et al., 2011; MAHLEIN et 

al., 2012), which used foliar diseases, it is clear the 

need to implement new methodologies that help 

remote sensing techniques in the early detection of 

root diseases in bean plants. 

 

IV. CONCLUSION 

The best classifier was the one that used as 

input variable the DVI vegetation index obtained 

from simulated multispectral data. 

There was no significant improvement in 

classification when using IVs obtained from 

hyperspectral data, when compared with IVs 

obtained from multispectral data. 

The classifier was able to discriminate 

between infected and healthy leaves, with a Kappa 

coefficient of 0.2105, after the first symptoms of 

the disease became visible, for cv. Supreme at 

medium severity level. 

The classifier did not show efficiency in 

the early discrimination of fusarium wilt. 

Future works proposing new 

methodologies together with remote sensing 

techniques may be carried out in order to increase 

the accuracy in the early detection of root diseases 

in bean plants. 
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